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hypersurface, and the vanishing of the beta invariant is equivalent to the hypotheses 
of Bobadilla’s conjecture.
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1. Introduction

Throughout this paper, we shall suppose that U is an open neighborhood of the origin in Cn+1, and 
that f : (U , 0) → (C, 0) is a complex analytic function with a 1-dimensional critical locus at the origin, i.e., 
dim0 Σf = 1. We use coordinates z := (z0, · · · , zn) on U .

We assume that z0 is generic enough so that dim0 Σ(f|V (z0)) = 0. One implication of this is that

V

(
∂f

∂z1
,
∂f

∂z2
, . . . ,

∂f

∂zn

)
is purely 1-dimensional at the origin. As analytic cycles, we write
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[
V

(
∂f

∂z1
,
∂f

∂z2
, . . . ,

∂f

∂zn

)]
= Γ1

f,z0 + Λ1
f,z0 ,

where Γ1
f,z0

and Λ1
f,z0

are, respectively, the relative polar curve and 1-dimensional Lê cycle; see [6] or 
Section 2.

We recall a classical non-splitting result (presented in a convenient form here) proved independently by 
Gabrielov, Lazzeri, and Lê (in [2], [3], and [4], respectively) regarding the non-splitting of the cohomology 
of the Milnor fiber of f|V (z0) over the critical points of f in a nearby hyperplane slice V (z0 − t) for a small 
non-zero value of t.

Theorem 1.1 (GLL non-splitting). The following are equivalent:

1. The Milnor number of f|V (z0) at the origin is equal to

∑
C

μ◦
C (C · V (z0))0 ,

where the sum is over the irreducible components C of Σf at 0, (C · V (z0))0 denotes the intersection 
number of C and V (z0) at 0, and μ◦

C denotes the Milnor number of f , restricted to a generic hyperplane 
slice, at a point p ∈ C − {0} close to 0.

2. Γ1
f,z0

is zero at the origin (i.e., 0 is not in the relative polar curve).

Furthermore, when these equivalent conditions hold, Σf has a single irreducible component which is smooth 
and is transversely intersected by V (z0) at the origin.

This paper is concerned with a recent conjecture made by Javier Fernández de Bobadilla, positing that, 
in the spirit of Theorem 1.1, the cohomology of the Milnor fiber of f , not of a hyperplane slice, does not 
split. We state a slightly more general form of Bobadilla’s original conjecture, for the case where Σf may, 
a priori, have more than a single irreducible component:

Conjecture 1.2 (Fernández de Bobadilla). Denote by Ff,0 the Milnor fiber of f at the origin. Suppose that 
H̃∗(Ff,0; Z) is non-zero only in degree (n − 1), and that

H̃n−1(Ff,0;Z) ∼=
⊕
C

Z
μ◦
C

where the sum is over all irreducible components C of Σf at 0. Then, in fact, Σf has a single irreducible 
component, which is smooth.

Bobadilla’s conjecture first appeared in [1] as a series of three conjectures A, B, and C, although we most 
directly address Conjecture C in our phrasing of Conjecture 1.2 (see the Introduction of [1]).

We approach Conjecture 1.2 via the beta invariant of a hypersurface with a 1-dimensional critical locus, 
first defined and explored by the second author in [5]. The beta invariant, βf , of f is an invariant of the 
local ambient topological-type of the hypersurface V (f). It is a non-negative integer, and is algebraically 
calculable.

Our motivation for using this invariant is the requirement that βf = 0 is precisely equivalent to the 
hypotheses of Conjecture 1.2, essentially turning the problem into a purely algebraic question (see The-
orem 5.4 of [5]). For this reason, we will refer to our new formulation of Conjecture 1.2 as the Beta 
Conjecture.
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In this paper, we give proofs of the Beta Conjecture in two special cases:

1. In Theorem 3.2, we prove an induction-like result for when f is a sum of two analytic functions defined 
on disjoint sets of variables.

2. In Theorem 4.2, we prove the result for the case when the relative polar curve Γ1
f,z0

is defined by a 
single equation inside the relative polar surface Γ2

f,z (see below).

2. Notation and known results

The bulk of this section is largely a summary of the concepts of Chapter 1 of [6], which will be used 
throughout this paper.

Our assumption that dim0 Σ(f|V (z0)) = 0 is equivalent to assuming that the variety V
(

∂f
∂z1

, · · · , ∂f
∂zn

)
is 

purely 1-dimensional (and non-empty) at 0 and is intersected properly by the hyperplane V (z0) at 0.

Definition 2.1. The relative polar surface of f with respect to z, denoted Γ2
f,z, is, as an analytic cycle at the 

origin,
[
V
(

∂f
∂z2

, · · · , ∂f
∂zn

)]
. Note that each component of this at the origin must be precisely 2-dimensional, 

and so is certainly not contained in Σf .
The relative polar curve of f with respect to z0, denoted Γ1

f,z0
, is, as an analytic cycle at the origin, the 

collection of those components of the cycle 
[
V
(

∂f
∂z1

, · · · , ∂f
∂zn

)]
which are not contained in Σf .

The 1-dimensional Lê cycle of f with respect to z0, at the origin, denoted Λ1
f,z0

, consists of those 

components of 
[
V
(

∂f
∂z1

, · · · , ∂f
∂zn

)]
at the origin which are contained in Σf .

We sometimes enclose an analytic variety V in brackets to indicate that we are considering V as a 
cycle. We do, however, frequently omit this notation if it is clear from context that a given variety is to be 
considered as an analytic cycle.

An immediate consequence of Definition 2.1 is that, as cycles on U ,

V

(
∂f

∂z1
, · · · , ∂f

∂zn

)
= Γ1

f,z0 + Λ1
f,z0 .

We will use this identity throughout this paper.
Note that, by assumption, V

(
∂f
∂z0

)
properly intersects Γ1

f,z0
at 0, and also that V (z0) properly intersects 

Λ1
f,z0

at 0.
Letting C’s denote the underlying reduced components of Σf at 0, we have (as cycles at the origin)

Λ1
f,z0 =

∑
C

μ◦
C [C],

where μ◦
C denotes the Milnor number of f , restricted to a generic hyperplane slice, at a point p ∈ C − {0}

close to 0 (see Remark 1.19 of [6]).

Definition 2.2. The intersection numbers 
(
Γ1
f,z0

· V
(

∂f
∂z0

))
0

and 
(
Λ1
f,z0

· V (z0)
)
0

are, respectively, the 

Lê numbers λ0
f,z0

and λ1
f,z0

(at the origin).
Via the above formula for Λ1

f,z0
, we have:

λ1
f,z0 =

∑
C

μ◦
C (C · V (z0))0 .
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A fundamental property of Lê numbers from [6] is:

Proposition 2.3. Let b̃n(Ff,0) and b̃n−1(Ff,0) denote the reduced Betti numbers of the Milnor fiber of f at 
the origin. Then,

b̃n(Ff,0) − b̃n−1(Ff,0) = λ0
f,z0 − λ1

f,z0 .

We will need the following classical relations between intersection numbers.

Proposition 2.4. Since dim0 Σ(f|V (z0)) = 0:

1. dim0 Γ1
f,z0

∩ V (f) ≤ 0, dim0 Γ1
f,z0

∩ V (z0) ≤ 0, dim0 Γ1
f,z0

∩ V
(

∂f
∂z0

)
≤ 0, and

(
Γ1
f,z0 · V (f)

)
0 =

(
Γ1
f,z0 · V (z0)

)
0 +

(
Γ1
f,z0 · V

(
∂f

∂z0

))
0
.

The proof of this result is sometimes referred to as Teissier’s trick.
2. In addition,

μ0

(
f|V (z0)

)
=

(
Γ1
f,z0 · V (z0)

)
0 +

(
Λ1
f,z0 · V (z0)

)
0 .

Formula (1) above was first proved by B. Teissier in [13] for functions with isolated critical points, and 
it is an easy exercise to show that the result still holds in the case where f has a critical locus of arbitrary 
dimension. Formula (2) follows from the fact that

Σ
(
f |V (z0)

)
= V

(
z0,

∂f

∂z1
, · · · , ∂f

∂zn

)

and the fact that V (z0) properly intersects V
(

∂f
∂z1

, · · · , ∂f
∂zn

)
at the origin.

The following numerical invariant, defined and discussed in [5], is crucial to the contents and goal of this 
paper.

Definition 2.5. The beta invariant of f with respect to z0 is:

βf = βf,z0 :=
(

Γ1
f,z0 · V

(
∂f

∂z0

))
0
−

∑
C

μ◦
C [(C · V (z0))0 − 1]

= λ0
f,z0 − λ1

f,z0 +
∑
C

μ◦
C

= b̃n(Ff,0) − b̃n−1(Ff,0) +
∑
C

μ◦
C .

Using Proposition 2.4, βf may be equivalently expressed as

βf =
(
Γ1
f,z0 · V (f)

)
0 − μ0

(
f|V (z0)

)
+
∑
C

μ◦
C .

Remark 2.6. A key property of the beta invariant is that the value βf is independent of the choice of linear 
form z0 (provided, of course, that the linear form satisfies dim0 Σ(f|V (z0)) = 0). This often allows a great 
deal of freedom in calculating βf for a given f , as different choices of linear forms L = z0 may result in 
simpler expressions for the intersection numbers λ0

f,z0
and λ1

f,z0
, while leaving the value of βf unchanged. 

See Remark 3.2 and Example 3.4 of [5].
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It is shown in [5] that βf ≥ 0. The interesting question is how strong the requirement that βf = 0 is.

Conjecture 2.7 (Beta Conjecture). If βf = 0, then Σf has a single irreducible component at 0, which is 
smooth.

Conjecture 2.8 (Polar form of the Beta Conjecture). If βf = 0, then 0 is not in the relative polar curve 
Γ1
f,z0

(i.e., the relative polar curve is 0 as a cycle at the origin).
Equivalently, if the relative polar curve at the origin is not empty, then βf > 0.

Proposition 2.9. The Beta Conjecture is equivalent to the polar form of the Beta Conjecture.

Proof. Suppose throughout that βf = 0.
Suppose first that the Beta Conjecture holds, so that Σf has a single irreducible component at 0, which 

is smooth. Then βf = λ0
f,z0

= 0, and so the relative polar curve must be zero at the origin.
Suppose now that the polar form of the Beta Conjecture holds, so that Γ1

f,z0
= 0 at 0. Then GLL 

non-splitting implies that Σf has a single irreducible component at 0, which is smooth. �
3. Generalized suspension

Suppose that U and W are open neighborhoods of the origin in Cn+1 and Cm+1, respectively, and let 
g : (U , 0) → (C, 0) and h : (W, 0) → (C, 0) be two complex analytic functions. Let π1 : U × W → U and 
π2 : U ×W → W be the natural projection maps, and set f = g � h := g ◦ π1 + h ◦ π2. Then, one trivially 
has

Σf =
(
Σg × C

m+1) ∩ (
C

n+1 × Σh
)
.

Consequently, if we assume that g has a one-dimensional critical locus at the origin, and that h has an 
isolated critical point at 0, then Σf = Σg × {0} is 1-dimensional and (analytically) isomorphic to Σg.

From this, one immediately has the following result.

Proposition 3.1. Suppose that g and h are as above, so that f = g � h has a one-dimensional critical locus 
at the origin in Cn+m+2. Then, βf = μ0(h)βg.

Proof. This is a consequence of the Sebastiani–Thom isomorphism (see the results of Némethi [8,9], Oka 
[10], Sakamoto [11], Sebastiani–Thom [12], and Massey [7]) for the reduced integral cohomology of the 
Milnor fiber of f = g � h at 0. Letting Ĉ denote the component of the critical locus f which corresponds 
to C, the Sebastiani–Thom Theorem tells us that

b̃n+m+1(Ff,0) = μ0(h)̃bn(Fg,0), b̃n+m(Ff,0) = μ0(h)̃bn−1(Fg,0), and μ◦
Ĉ

= μ0(h)μ◦
C .

Thus,

βf = λ0
f,z0 − λ1

f,z0 +
∑
Ĉ

μ◦
Ĉ

= b̃n+m+1(Ff,0) − b̃n+m(Ff,0) +
∑
Ĉ

μ◦
Ĉ

= μ0(h)βg. �

Theorem 3.2. Suppose f = g � h, where g and h are as in Proposition 3.1. Then, the Beta Conjecture is 
true for g if and only if it is true for f .

Proof. Suppose that βf = 0. By Proposition 3.1, this is equivalent to βg = 0, since μ0(h) > 0. By assump-
tion, βg = 0 implies that Σg is smooth at zero. Since Σf = Σg×{0}, it follows that Σf is also smooth at 0, 
i.e., the Beta Conjecture is true for f . The exact same proof then implies the converse. �
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4. Γ1
f,z0

as a hypersurface in Γ2
f,z

Let I := 〈 ∂f
∂z2

, · · · , ∂f∂zn
〉 ⊆ OU,0, so that the relative polar surface of f with respect to the coordinates z

is (as a cycle at 0) given by Γ2
f,z = [V (I)].

For the remainder of this section, we will drop the brackets around cycles for convenience, and assume that 
everything is considered as a cycle unless otherwise specified. We remind the reader that we are assuming 
that f has a 1-dimensional critical locus at the origin and that f|V (z0) has an isolated critical point at the 
origin.

Proposition 4.1. The following are equivalent:

1. dim0

(
Γ2
f,z ∩ V (f) ∩ V (z0)

)
= 0.

2. For all irreducible components D at the origin of the analytic set Γ2
f,z ∩ V (f), D is 1-dimensional and 

properly intersected by V (z0) at the origin.
3. Γ2

f,z is properly intersected by V (z0, z1) at the origin.

Furthermore, when these equivalent conditions hold(
Γ2
f,z · V (f) · V (z0)

)
0 = μ0

(
f|V (z0)

)
+
(
Γ2
f,z · V (z0, z1)

)
0 .

Proof. Clearly (1) and (2) are equivalent. We wish to show that (1) and (3) are equivalent. This follows 
from Tessier’s trick applied to f|V (z0) , but – as it is crucial – we shall quickly run through the argument.

Since f|V (z0) has an isolated critical point at the origin,

dim0

(
Γ2
f,z ∩ V

(
∂f

∂z1

)
∩ V (z0)

)
= 0.

Hence, Z := Γ2
f,z ∩ V (z0) is purely 1-dimensional at the origin.

Let Y be an irreducible component of Z through the origin, and let α(t) be a parametrization of Y such 
that α(0) = 0. Let z1(t) denote the z1 component of α(t). Then,

(
f(α(t))

)′ = ∂f

∂z1
∣∣
α(t)

· z′1(t). (†)

Since dim0 Y ∩ V

(
∂f

∂z1

)
= 0, we conclude that 

(
f(α(t))

)′ ≡ 0 if and only if z′1(t) ≡ 0, which tells us that 

f(α(t)) ≡ 0 if and only if z1(t) ≡ 0. Thus, dim0 Y ∩ V (f) = 0 if and only if dim0 Y ∩ V (z1) = 0, i.e., 
(1) and (3) are equivalent. The equality now follows at once by considering the t-multiplicity of both sides 
of (†). �
Theorem 4.2. Suppose that:

1. for all irreducible components D at the origin of the analytic set Γ2
f,z ∩ V (f), D is 1-dimensional, 

properly intersected by V (z0) at the origin, and (D · V (z0))0 = mult0 D, and
2. the cycle Γ1

f,z0
equals Γ2

f,z · V (h) for some h ∈ OU,0 such that h(0) = 0; in particular, the relative polar 
curve at the origin is non-empty.

Then,

b̃n(Ff,0) − b̃n−1(Ff,0) ≥
(
Γ2
f,z · V (z0, z1)

)

0
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and so

βf ≥
(
Γ2
f,z · V (z0, z1)

)
0 +

∑
C

μ◦
C ≥ 2,

where the sum is over the irreducible components C of Σf at 0.
In particular, the polar form of the Beta Conjecture (and, hence, the Beta Conjecture) is true for f .

Proof. By Proposition 4.1,

(
Γ2
f,z · V (f) · V (z0)

)
0 = μ0

(
f|V (z0)

)
+
(
Γ2
f,z · V (z0, z1)

)
0 .

By assumption, Γ1
f,z0

= Γ2
f,z·V (h), for some h ∈ OU,0. Then, via Proposition 2.4 and the above paragraph, 

we have

b̃n(Ff,0) − b̃n−1(Ff,0) = λ0
f,z0 − λ1

f,z0

=
(
Γ1
f,z0 · V (f)

)
0 − μ0

(
f|V (z0)

)
=

[(
Γ2
f,z · V (h) · V (f)

)
0 −

(
Γ2
f,z · V (f) · V (z0)

)
0

]
+
(
Γ2
f,z · V (z0, z1)

)
0 .

As (D · V (z0))0 = mult0 D for all irreducible components D of Γ2
f,z∩V (f), the bracketed quantity above 

is non-negative. Therefore,

βf ≥
(
Γ2
f,z · V (z0, z1)

)
0 +

∑
C

μ◦
C .

As 0 ∈ Σf ⊆ Γ2
f,z, we have 

(
Γ2
f,z · V (z0, z1)

)
0
≥ 1 and, as we are assuming that Σf is 1-dimensional at 

the origin, 
∑

C μ◦
C ≥ 1. The desired inequality follows. �

Example 4.3. To illustrate the content of Theorem 4.2, consider the following example. Let f = (x3+y2+z5)z
on C3, with coordinate ordering (x, y, z). Then, we have Σf = V (x3 + y2, z), and

Γ2
f,(x,y) = V

(
∂f

∂z

)
= V (x3 + y2 + 6z5),

which we note has an isolated singularity at 0.
Then,

V

(
∂f

∂y
,
∂f

∂z

)
= V (2yz, x3 + y2 + 6z5)

= V (y, x3 + 6z5) + V (z, x3 + y2)

so that Γ1
f,x = V (y, x3 + 6z5), and Λ1

f,x consists of the single component C = V (z, x3 + y2) with 
◦
μC= 1. It 

is then immediate that

Γ1
f,x = V (y) · Γ2

f,(x,y),

so that the second hypothesis of Theorem 4.2 is satisfied. For the first hypothesis, we note that
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Γ2
f,(x,y) ∩ V (f) = V (x3 + y2 + 6z5, (x3 + y2 + z5)z)

= V (5z5, x3 + y2 + z5) ∪ V (x3 + y2, z)

= V (x3 + y2, z) = D.

Clearly, D is 1-dimensional, and is properly intersected by V (x) at 0. Finally, we see that

(D · V (x))0 = V (x, z, x3 + y2)0 = 2 = mult0 D,

so the two hypotheses of Theorem 4.2 are satisfied.
By Proposition 2.3, Theorem 4.2 guarantees that the following inequality holds:

λ0
f,x − λ1

f,x ≥
(
Γ2
f,(x,y) · V (x, y)

)
0
.

Let us verify this inequality ourselves. We have

λ0
f,x =

(
Γ1
f,x · V

(
∂f

∂x

))
0

= V (y, x3 + 6z5, 3x2z)0

= V (y, x2, z5)0 + V (y, z, x3)0 = 13,

and

λ1
f,x =

(
Λ1
f,x · V (x)

)
0 = V (x, z, x3 + y2)0 = 2.

Finally, we compute (
Γ2
f,(x,y) · V (x, y)

)
0

= V (x, y, x3 + y2 + 6z5)0 = 5.

Putting this all together, we have

λ0
f,x − λ1

f,x = 11 ≥ 5 =
(
Γ2
f,(x,y) · V (x, y)

)
0
,

as expected.

Example 4.4. We now give an example where the relative polar curve is not defined inside Γ2
f,z by a single 

equation, and b̃n(Ff,0) − b̃n−1(Ff,0) < 0.
Let f = (z2 − x2 − y2)(z − x), with coordinate ordering (x, y, z). Then, we have Σf = V (y, z − x), and

Γ2
f,z = V

(
∂f

∂z

)
= V (2z(z − x) + (z2 − x2 − y2)).

Similarly,

V

(
∂f

∂y
,
∂f

∂z

)
= V (y, 3z + x) + 3V (y, z − x),

so that Γ1
f,x = V (y, 3z + x) and μ◦ = 3. It then follows that Γ1

f,x is not defined by a single equation inside 
Γ2
f,(x,y).
To see that b̃2(Ff,0) − b̃1(Ff,0) < 0, we note that, up to analytic isomorphism, f is the homogeneous 

polynomial f = (zx − y2)z. Consequently, we need only consider the global Milnor fiber of f , i.e., Ff,0 is 
diffeomorphic to f−1(1). Thus, Ff,0 is homotopy equivalent to S1, so that b̃2(Ff,0) = 0 and b̃1(Ff,0) = 1.
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Corollary 4.5. The Beta Conjecture is true if the set Γ2
f,z is smooth and transversely intersected by V (z0, z1)

at the origin. In particular, the Beta Conjecture is true for non-reduced plane curve singularities.

Proof. Suppose that the cycle Γ2
f,z = m[V (p)], where p is prime. Since the set Γ2

f,z is smooth, A := OU,0/p

is regular and so, in particular, is a UFD. The image of ∂f/∂z1 in A factors (uniquely), yielding an h as in 
hypothesis (2) of Theorem 4.2.

Furthermore, the transversality of V (z0, z1) to Γ2
f,z at the origin assures us that, by replacing z0 by a 

generic linear combination az0 + bz1, we obtain hypothesis (1) of Theorem 4.2. �
Example 4.6. Consider the case where f = z2 + (y2 − x3)2 on C3, with coordinate ordering (x, y, z); a quick 
calculation shows that Σf = V (z, y2 − x3). Then,

Γ2
f,(x,y) = V

(
∂f

∂z

)
= V (z)

is clearly smooth at the origin and transversely intersected at 0 by the line V (x, y), so the hypotheses of 
Corollary 4.5 are satisfied. Again, we want to verify by hand that the inequality

λ0
f,x − λ1

f,x ≥
(
Γ2
f,(x,y) · V (x, y)

)
0

holds.
First, we have

λ0
f,x =

(
Γ1
f,x · V

(
∂f

∂x

))
0

= V (y, z, 2(y2 − x3)(−3x2))0 = V (y, z, x5)0 = 5,

and

λ1
f,x =

(
Λ1
f,x · V (x)

)
0 = V (x, z, y2 − x3)0 = V (x, z, y2)0 = 2.

On the other hand, we have 
(
Γ2
f,(x,y) · V (x, y)

)
0

= V (x, y, z)0 = 1, and we see again that the desired 

inequality holds.

In the case where f defines non-reduced plane curve singularity, there is a nice explicit formula for βf , 
which we will derive in Section 5.

5. Non-reduced plane curves

By Corollary 4.5, the Beta Conjecture is true for non-reduced plane curve singularities. However, in that 
special case, we may calculate βf explicitly.

Let U be an open neighborhood of the origin in C2, with coordinates (x, y).

Proposition 5.1. Suppose that f is of the form f = g(x, y)ph(x, y), where g : (U , 0) → (C, 0) is irreducible, 
g does not divide h, and p > 1. Then,

βf =
{

(p + 1)V (g, h)0 + pμ0(g) + μ0(h) − 1, if h(0) = 0; and
pμ0(g), if h(0) �= 0.

Thus, βf = 0 implies that Σf is smooth at 0.
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Proof. After a possible linear change of coordinates, we may assume that the first coordinate x satisfies
dim0 Σ(f|V (x)) = 0, so that dim0 V (g, x) = dim0 V (h, x) = 0 as well.

As germs of sets at 0, the critical locus of f is simply V (g). As cycles,

V

(
∂f

∂y

)
= Γ1

f,x + Λ1
f,x = V

(
phgp−1 ∂g

∂y
+ gp

∂h

∂y

)
= V

(
ph

∂g

∂y
+ g

∂h

∂y

)
+ (p− 1)V (g),

so that Γ1
f,x = V

(
ph∂g

∂y + g ∂h
∂y

)
and Σf consists of a single component C = V (g). It is a quick exercise to 

show that, for g irreducible, g does not divide ∂g∂y , and so the nearby Milnor number is precisely μ◦
C = (p −1)

along V (g).
Suppose first that h(0) = 0.
Then, by Proposition 2.4,

λ0
f,x − λ1

f,x =
(
Γ1
f,x · V (f)

)
0 − μ0

(
f|V (x)

)
.

We then expand the terms on the right hand side, as follows:(
Γ1
f,x · V (f)

)
0 = p

(
Γ1
f,x · V (g)

)
0 +

(
Γ1
f,x · V (h)

)
0

= pV

(
g, h

∂g

∂y

)
0

+ V

(
h, g

∂h

∂y

)
0

= (p + 1)V (g, h)0 + pV

(
g,

∂g

∂y

)
0

+ V

(
h,

∂h

∂y

)
0
.

Since dim0 V (g, x) = 0 and dim0 V (h, x) = 0, the relative polar curves of g and h with respect to x are, 
respectively, Γ1

g,x = V
(

∂g
∂y

)
and Γ1

h,x = V
(

∂h
∂y

)
. We can therefore apply Teissier’s trick to this last equality 

to obtain

(
Γ1
f,x · V (f)

)
0 = (p + 1)V (g, h)0 + p

[
V

(
∂g

∂y
, x

)
0

+ μ0(g)
]

+
[
V

(
∂h

∂y
, x

)
0

+ μ0(h)
]

= (p + 1)V (g, h)0 + pμ0(g) + pV (g, x)0 + V (h, x)0 − (p + 1).

Next, we calculate the Milnor number of the restriction of f to V (x):

μ0

(
f|V (x)

)
= V

(
∂f

∂y
, x

)
0

=
(
Γ1
f,x · V (x)

)
0 + (p− 1)V (g, x)0.

Substituting these equations back into our initial identity, we obtain the following:

λ0
f,x − λ1

f,x = (p + 1)V (g, h)0 + V (g, x)0 + V (h, x)0

+ pμ0(g) + μ0(h) −
(
Γ1
f,x · V (x)

)
0 − (p + 1).

We now wish to show that 
(
Γ1
f,x · V (x)

)
0

= V (gh, x)0 − 1. To see this, we first recall that

(
Γ1
f,x · V (x)

)
0 = multy

{(
ph · ∂g

∂y

)
|V (x)

+
(
g · ∂h

∂y

)
|V (x)

}
,
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where g|V (x) and h|V (x) are (convergent) power series in y with constant coefficients. If the lowest-degree 

terms in y of 
(
ph∂g

∂y

)
|V (x)

and 
(
g ∂h
∂y

)
|V (x)

do not cancel each other out, then the y-multiplicity of their 

sum is the minimum of their respective y-multiplicities, both of which equal V (gh, x)0 − 1. We must show 
that no such cancellation can occur. To this end, let g|V (x) =

∑
i≥n aiy

i and h|V (x) =
∑

i≥m biy
i be power 

series representations in y, where n = multy g|V (x) and m = multy h|V (x) (so that an, bm �= 0). Then, a quick 

computation shows that the lowest-degree term of 
(
ph∂g

∂y

)
|V (x)

is pn anbm, and the lowest-degree term of (
g ∂h
∂y

)
|V (x)

is m anbm. Consequently, no cancellation occurs, and thus 
(
Γ1
f,x · V (x)

)
0

= V (gh, x)0 − 1 =
n + m − 1.

Therefore, we conclude that

βf = (p + 1)V (g, h)0 + pμ0(g) + μ0(h) − 1.

Since V (g) and V (h) have a non-empty intersection at 0, the intersection number V (g, h)0 is greater than 
one (so that βf > 0).

Suppose now that h(0) �= 0. Then, from the above calculations, we find(
Γ1
f,x · V (f)

)
0 = pμ0(g) + pV (g, x)0 − (p + 1), and

μ0

(
f|V (x)

)
= pV (g, x)0 − 1

so that βf = pμ0(g).
Recall that, as Σf = V (g), the critical locus of f is smooth at 0 if and only if V (g) is smooth at 0; 

equivalently, if and only if the Milnor number of g at 0 vanishes. Hence, when Σf is not smooth at 0, 
μ0(g) > 0, and we find that βf > 0, as desired. �
Remark 5.2. Suppose that f(x, y) is of the form f = gh, where g and h are relatively prime, and both 
have isolated critical points at the origin. Then, f has an isolated critical point at 0 as well, and the same 
computation in Proposition 5.1 (for μ0(f) instead of βf ) yields the formula

μ0(f) = 2V (g, h)0 + μ0(g) + μ0(h) − 1.

Thus, the formula for βf in the non-reduced case collapses to the “expected value” of μ0(f) exactly when 
p = 1 and f has an isolated critical point at the origin.
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